Differential evolution for dynamic environments with unknown numbers of optima

نویسندگان

  • Mathys C. du Plessis
  • Andries Petrus Engelbrecht
چکیده

This paper investigates optimization in dynamic environments where the numbers of optima are unknown or fluctuating. The authors present a novel algorithm, Dynamic Population Differential Evolution (DynPopDE), which is specifically designed for these problems. DynPopDE is a Differential Evolution based multi-population algorithm that dynamically spawns and removes populations as required. The new algorithm is evaluated on an extension of the Moving Peaks Benchmark. Comparisons with other state-of-the-art algorithms indicate that DynPopDE is an effective approach to use when the number of optima in a dynamic problem space is unknown or changing over time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Adaptive Differential Evolution for Dynamic Environments with Fluctuating Numbers of Optima

Despite the fact that evolutionary algorithms often solve static problems successfully, dynamic optimization problems tend to pose a challenge to evolutionary algorithms [21]. Differential evolution (DE) is one of the evolutionary algorithms that does not scale well to dynamic environments due to lack of diversity [35]. A significant body of work exists on algorithms for optimizing dynamic prob...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

متن کامل

CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems

In real life we are often confronted with dynamic optimization problems whose optima change over time. These problems challenge traditional optimization methods as well as conventional evolutionary optimization algorithms. In this paper, we propose an evolutionary model that combines the differential evolution algorithm with cellular automata to address dynamic optimization problems. In the pro...

متن کامل

OPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL FORCE OPTIMIZATION AND DIFFERENTIAL EVOLUTION

For any agency dealing with the design of the water distribution network, an economic design will be an objective. In this research, Central Force Optimization (CFO) and Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution network. Optimization of the network has been evaluated by developing an optimization model based on CFO and DE algorithm in MATLAB and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013